
Voyant Notebooks Literate Programming,
Programming Literacy

Voyant Notebooks is a web-based platform for digital scholarship. It combines the powerful back-end analytic
capabilities of Voyant Tools with front-end web-authoring capabilities for text, code, and visualization tools.

The Problem: Conventional humanities scholarship privileges
interpretation and argumentation in prosaic style. Some digital
humanities work makes use of complex analytic and algorithmic
operations. The two modes of writing are very challenging to
combine in existing publication platforms (print and digital), especially
in ways that document and explain procedures adequately without
distracting too much from the arguments.

A Solution: Voyant Notebooks is a new digital scholarship platform that’s intended to support user-friendly
web-based authoring of text, live (executable) code snippets, tool results, and visualizations. In addition to
writing text, authors can use the Javascript-based macro language as a glue between the sophisticated front-end
functionality of Voyant Tools and its powerful back-end analytics engine. Readers can interact with live output
and they also have access to data and code to learn, explore and debate new methodologies.

Literate Programming
	 Some thirty years ago Donald Knuth, a computer scientist, proposed
literate programming as a better way of organizing narrative and code
(1984). Knuth argued that more emphasis should be placed on explaining
to humans what computers are meant to do, rather than simply
instructing computers what to do. Knuth was especially interested in
weaving together macro-style code snippets with prose that provided a
larger narrative context, not merely functional comments of specific lines
of code that are the distilled remnants of an intellectual process.
	 Literate programming has been more influential in theory than in
practice (Nørmark), despite several utilities and environments including
Mathematica, Knuth’s (C)WEB, Sweave for R, and Marginalia for Clojure.
Perhaps the exigencies of programming in the real world correspond
poorly with the vision of Knuth of the programmer as author: “the
practitioner of literate programming can be regarded as an essayist,
whose main concern is with exposition and excellence of style” (1992,
p.1). However, that balance of essayist and coder strikes us as perfectly
appropriate for the digital humanities, a natural blend of the expression of
intellectual process with the exposition of technical methodologies. The
prose can gloss the code, or vice-versa, in a symbiotic relationship that
serves to strengthen an argument and demonstrate its own workings.
	 One of the most significant potential benefits of the literate
programming paradigm is pedagogical: these works can both explain an
interpretive insight and present the methodology for reproducing the
data or results that were part of the process. Many widely-read digital
humanities blogs already present these characteristics of exploration,
explanation, interpretation and step-by-step instructions (see for example
blogs by Ted Underwood, Benjamin Schmidt, Lisa Rhody and Scott
Weingart). Literate programming can be more self-contained and more
useful for those learning new methodologies and new programming
techniques. This is about the principles of literate programming, but also
about the potential for increasing programming literacy.

Challenges:
•	code execution in an asynchronous architecture,
•	avoid browser freezes during longer executions,
•	mitigating the security risks of user-defined JS code,
•	managing access rights to underlying data,
•	variable scoping across editor instances & components,
•	embedding of Voyant tool panels and other services,
•	flexible API for different programming levels and styles,
•	including both client-side and server-side operations,
•	efficiency of often executed code snippets.

Technologies:
•	client: ExtJS, jQuery, CKEditor, Ace, D3.js, etc.
•	server: Apache Software Foundation, StanfordNLP, etc.

References:
•	Knuth, Donald. “Literate Programming,” The Computer Journal
27, no. 2 (1984): 97-111, 1.

•	Knuth, Donald. Literate Programming,” Stanford University
Center for the Study of Language and Information, 1992.

•	Nørmark, Kurt. “Literate Programming: Issues and Problems,”
(last modified August 13, 1998), bit.ly/10IVFCx

•	Sinclair, Stéfan and Geoffrey Rockwell. “Teaching Computer-
Assisted Text Analysis: Approaches to Learning New
Methodologies” in Digital Humanities Pedagogy. Open Book
Publishers, 2012.

Thanks: Matthew Milner, Andrew Macdonald, & more:
bit.ly/13FUIh7

Stéfan Sinclair (McGill University) & Geoffrey Rockwell (University of Alberta)

Clay
 Ta

ble
ts

Vo
ya

nt
 N

ot
eb

oo
ks

Ele
ct

ro
nic

 Te
xt

Pr
int

ing
 P

re
ss

M
ov

ab
le

Ty
pe

Cod
ex

Pa
pe

r

Pa
rc

hm
en

t

Pa
py

ru
s

Ba
m

bo
o

W
ax

